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Key concepts

• we are not interested in random functions
• we want to condition on the training data
• when both prior and likelihood are Gaussian, then

• posterior is a Gaussian process
• predictive distributions are Gaussian

• pictorial representation of prior and posterior
• interpretation of predictive equations

Carl Edward Rasmussen Posterior Gaussian Process October 17th, 2022 2 / 6



Gaussian Process Inference

Recall Bayesian inference in a parametric model.

The posterior is proportional to the prior times the likelihood.

The predictive distribution is the predictions marginalized over the parameters.

How does this work in a Gaussian Process model?

Answer: in our non-parametric model, the “parameters” are the function itself!
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Non-parametric Gaussian process models

In our non-parametric model, the “parameters” are the function itself!
The joint distribution

p(f,y) = p(f)p(y|f) = p(y)p(f|y)

=⇒ N(f|m, k)N(y|f) = Z|yN(f|m|y, k|y).

Gaussian process prior with zero mean and covariance function k

p(f|Mi) ∼ N(f|m ≡ 0, k),

Gaussian likelihood, with noise variance σ2
noise

p(y|f,Mi) ∼ N(f, σ2
noiseI),

leads to a Gaussian process posterior

p(f|y,Mi) ∼ N(f|m|y, k|y),

where
{
m|y(x) = k(x, x)[K(x, x) + σ2

noiseI]
−1y,

k|y(x, x
′) = k(x, x ′) − k(x, x)[K(x, x) + σ2

noiseI]
−1k(x, x ′).
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Prior and Posterior
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Predictive distribution:

p(y∗|x∗, x,y) ∼ N
(
k(x∗, x)

>[K+ σ2
noiseI]

−1y,

k(x∗, x∗) + σ2
noise − k(x∗, x)

>[K+ σ2
noiseI]

−1k(x∗, x)
)
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Some interpretation

Recall our main result:

f∗|x∗, x, y ∼ N
(
K(x∗, x)[K(x, x) + σ2

noiseI]
−1y,

K(x∗, x∗) − K(x∗, x)[K(x, x) + σ2
noiseI]

−1K(x, x∗)
)
.

The mean is linear in two ways:

µ(x∗) = k(x∗, x)[K(x, x) + σ2
noiseI]

−1y =

N∑
n=1

βnyn =

N∑
n=1

αnk(x∗, xn).

The last form is most commonly encountered in the kernel literature.
The variance is the difference between two terms:

V(x∗) = k(x∗, x∗) − k(x∗, x)[K(x, x) + σ2
noiseI]

−1k(x, x∗),

the first term is the prior variance, from which we subtract a (positive) term,
telling how much the data x has explained.
Note, that the variance is independent of the observed outputs y.
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